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Hamiltonian simulation

Solution of the Schrédinger equation,
00 = H(t)w,  HE)' =H(),  v(e) e .
Feynman, R. P. Simulating physics with computers. Int J Theor Phys 21, 467-488 (1982).

the real difficulty is this: If we had many particles, we have R particles,, for
example, in a system, then we would have to describe the probability of a
circumstance by giving the probability to find these particles at points
X\, X5,...,Xg at the time ¢. That would be a description of the probability of
the system. And therefore, you’d need a k-digit number for every configura-
tion of the system, for every arrangement of the R values of x. And
therefore if there are N points in space, we’d need N® configurations.

n-body problems

e PDE, ¢ € CV" after spatial discretisation with N/ points in each direction,

e ODE, 1) € C*" for 2-level systems (e.g. spin systems).


https://doi.org/10.1007/BF02650179

Why quantum algorithms for Hamiltonian simulation?

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM
SIMULATORS

The first branch, one you might call a side-remark, is, Can you do it
with a new kind of computer—a quantum computer? (I'll come back to the
other branch in a moment.) Now it turns out, as far as I can tell, that you
can simulate this with a quantum system, with quantum computer elements.
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e Linear growth in number of qubits vs exponential in classical computing

e Provides a straightforward approach for beating the curse of dimensionality in quantum
physics and chemistry simulations



Example: spin systems

e A uniquely quantum phenomenon that has no classical counterpart.

p=1(l+s o)eC>?

9§0§0§°§°¢0¢0¢e¢0¢0 sER,
0*0*@*0*@*0*@*@*@*& and o = (X, Y, 2)
OCYHOSSODS,

are 2 X 2 Pauli matrices.

e The phenomenon that powers
e magnetic resonance imaging (MRI)
e spintronics
e quantum computing

Responsible for ferromagnetism.

Suspected to be involved in detection of Earth’'s magnetic field by birds
(quantum biology).

Fay, Lindoy, Manolopolous, Hore 2020: ‘the accurate simulation of
anisotropic magnetic field effects relevant to magnetoreception seems to
require full quantum mechanical calculations’



Quantum computing comes home

For n interacting spins, state space is exponentially large, p € c¥'x?",


https://arxiv.org/abs/2403.00910

Quantum computing comes home

For n interacting spins, state space is exponentially large, p € C*"*2".
However, requires linear growth in qubits.


https://arxiv.org/abs/2403.00910

ntum computing comes home

For n interacting spins, state space is exponentially large, p € c¥'x?

However, requires linear growth in qubits.

Resurgence of interest in quantum algorithms for Hamiltonian simulation.

Berry et al. 15, Low & Chuang 17, 19, Low & Wiebe 18, Smith et al. 19, Kieferova et al. 19,
Berry et al. 20, Chen et al. 21, Haah et al. 21, Jin & Li 21, Jin et al. 21, Dong et al. 21,22, An et
al. 22, Watkins et al. 22, Mizuta et al. 23,...

Hamiltonian simulation of two-level systems is among early candidates for

demonstrating quantum advantage. (Childs et al. 18, Seetharam et al. 21).

e Claim by IBM (14 June 2023): Kim, Eddins, Anand, Wei, van den Berg, Rosenblatt, Nayfeh,
Wu, Zaletel, Temme & Kandala (2023), ‘Evidence for the utility of quantum computing
before fault tolerance’, Nature 618, 500-505.

e Claim by DWave (1 March 2024): King et al, ‘Computational supremacy in quantum
simulation’, arXiv:2403.00910



https://arxiv.org/abs/2403.00910

Why is Hamiltonian simulation central to quantum computing?
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Every gate has an underlying Hamiltonian

e Every quantum circuit is a Hamiltonian Simulation (except measurement)

Due to the unitary nature of quantum computing, Hamiltonian simulation
is a natural building block for quantum algorithms

Important subroutine in quantum algorithms — QPE (Kitaev 95), HHL
(Harrow, Hassidim, Lloyd 09)



Hamiltonian Simulation

1. Linear
Oru = Au

2. Driven
Oru = A(t)u

3. Non-linear
Oru = Au+ N(u)



Hamiltonian Simulation, ODEs and the matrix exponential

The Schrodinger equation

Oru = —iHu, u(0) = wo, H" =H,
can be thought of as an ODE

Oru = Au, u(0) = wo, A= —iH

The exact solution of this ODE is given by the matrix exponential

u(t) = g = i (tA)k.

k!
k=0




Hamiltonian Simulation, ODEs and the matrix exponential

The Schrodinger equation

Oru = —iHu, u(0) = wo, H" =H,
can be thought of as an ODE

Oru = Au, u(0) = wo, A= —iH

The exact solution of this ODE is given by the matrix exponential

o0 k
u(t) = ePuy = Z (tfl) .
k=0 ’

exp maps Lie algebra ill € su(n) to Lie group e € U(n), leading to:
e Unitary evolution

(u(t), v(¢)) = (u(0), v(0))

e Conservation of norm

lu(ll, = ()], = 1

e Conservation of energy

(u(t), Hu(t)) = (u(0), Hu(0))



Geometric Numerical Integration

exp maps Lie algebra il € su(n) to Lie group e € U(n).

These properties are also desired from numerical approximations.
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Geometric Numerical Integration

exp maps Lie algebra il € su(n) to Lie group e € U(n).

These properties are also desired from numerical approximations.

e x~1l+z up (I — ihH)ug F.E. [|tn]l2— oo

ef L (I + ihH)u

—z

up B.E. Hun‘lzﬁo
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Trapezoidal Rule (or Crank Nicholson) conserves unitarity, norm and energy.



Geometric Numerical Integration

exp maps Lie algebra il € su(n) to Lie group e € U(n).

These properties are also desired from numerical approximations.

e x~1l+z vy = (I —ihH)up F.E. [|tn]l2— oo
e’ ~ 111 (I +ihH)u = up B.E. [|tnll2— O
o v L2 (I+i(h/2)H) vy, = (I —i(h/2)H) up TR |lunlla= |luoll2

cay(z) = izg maps Lie algebra il € su(n) to Lie group e '™ € U(n).

Trapezoidal Rule (or Crank Nicholson) conserves unitarity, norm and energy.

Geometric Numerical Integration:

The design of numerical methods that conserve certain properties exactly, even
if numerical error in solution is finite



Computing the matrix exponential

Computing ¢ or ¢”up

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review (2003).

Diagonalisation Scaling and Squaring Splitting
If A= UDU* [|A]l> 1 A=B+C

et = vePur A = (eA/")n e = limp_ oo (eB/"eC/”>n
Fast when | Uup and U" ug cheap [|Al|< 1 needed ef, e cheap

Asymptotic Approximate e” on spectrum Iterative
z—0 z € [a, b] C o(A) Use A and up
Taylor Chebyshev
K
Polynomial Do 5 Jo(i) + 230, i*Jk(—1) Tk(z) | Polynomial Krylov
Padé
14l 1,2
Rational bl LA8 p L ? Rational Krylov
]

10


https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180

Trotterisation <> Splitting methods for matrix exponential

A+B) b

If €™ and e"® are easier to compute, approximate el Y

splitting error name stages

AL O (hz) Trotter 2

11


https://link.springer.com/article/10.1007/s10208-013-9182-8

Trotterisation <> Splitting methods for matrix exponential

If €™ and e"® are easier to compute, approximate eh(A+B) by
splitting error name stages
ehehB O(h2) Trotter 2

02" o(h?) Strang 3

11
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Trotterisation <> Splitting methods for matrix exponential

If €™ and e"® are easier to compute, approximate eMA+E) 1y

y
splitting error name stages
eMAehB O(h2) Trotter 2
Lig ha_ins 3
e2""eMe2 O(h’) Strang 3

e?MBehhfenhB | oA gahBebihAeahB O (p2Pt1)  Classical — O(27)

11
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Trotterisation <> Splitting methods for matrix exponential

If €™ and e"® are easier to compute, approximate eh(A+B) by
splitting error name stages
ehehB O(h2) Trotter 2
Lig ha_ins 3
e2""eMe2 O(h’) Strang 3
e?MBehhfenhB | oA gahBebihAeahB O (p2Pt1)  Classical — O(27)
ha hg 2 K3 hg h
ese2Be3(MAt+agllABlBD g3 BogA O(K*™)  Compact  O(2°)
hp h 3 5 3p _ha h .
3Be3 A Re S Ro3A03B O(K*™)  Asymptotic  O(p)
Yoshida 1990, Murua & Sanz-Serna 1999, Chin & Chen 2002, McLachlan & Quispel 2002, Omelyan, Mrygold & Folk 2003, Blanes, Casas

& Murua 2008, Chartier & Murua 2009, ... Asymptotic (Zassenhaus) Bader, Iserles, Kropielnicka, & S. 2014, Found. Comp. Math.

If ¢" and e"® conserve unitarity, then splitting conserves unitarity, norm,

modified energy.
1


https://link.springer.com/article/10.1007/s10208-013-9182-8

Example: Spin Hamiltonians

1
H = e'S + 5STCS
Hss(t) —
Hin
- a 1 . o,/
- Y Y garlY T cras
k=1 ac{X,Y,Z} j.k=1a,Be{X,Y,Z}

where ay acts on kth spin only,

=18 -0l a /e el cC™,
—_— N Y——

n—k times kth k—1 times

and a = X, Y, Z are Pauli matrices,

) ) )

Two-level systems: Ising chains, Kitaev models, NMR/ESR, qubits (spin, superconducting, ...)




Classical Trotterisation algorithms

Oru= Au, u(0)= uo,

exact solution given by matrix exponential

o8 = epAin=" (t:")k -
k=0 :

Hamiltonian simulation:

A = -i(es + 87Cs) (1)

13



Classical Trotterisation algorithms
Oru= Au, u(0)= uo,

exact solution given by matrix exponential
-~ (tA)

u(t) = exp(tA)uo = Z Lo

k=0
Hamiltonian simulation:
1
A = —i(e's + §STCS) (1)
For non-interacting spins, since su(2) is spanned by iX,iY,iZ and
X,Y]=iz, [Y,Z]=iX, [Z,X]=1Y,
can compute exponential analytically
an (UElL) an (121
n n tlegll 05 2 057 % 2
tA —itey- s\~ ) ~ & e T (—ieg — ek) I
e @ =@ () i) |-
L. 2 ., 2
k=1 (—ief +¢)) e cos ( rHi" I ) +ief —Te

k=1

13



Classical Trotterisation algorithms

Oru = Au, u(0) = up,

exact solution given by matrix exponential

2 (tA)*
u(t) = exp(tA)uo = Z ( k!) uo.
k=0
Hamiltonian simulation:
A = —i(e's + %STCS) (1)

For non-interacting spins, since su(2) is spanned by iX,iY,iZ and
X,Y]=iz, [Y,Z]=iX, [Z,X]=1Y,

can compute exponential analytically

(1l (el
n n el _ .oz 2 ey 2
tA —itey-o __ COS( 2 1€ e (—iex — &) Tex T
€ = € = ruekn) n (el g
7 — ' 2 tie u) ' 2
k=1 k=1 X 7 k z
—i — —i= i
(e} + &) —ye,7 COS ( 2 18— Te,T

Trotterisation: For —iH = A + B we need to split

exp(h(A + B)) = e"e"® + o(/#)
13



Quantum Trotterisation algorithms

Trotterisation:

o TR 1H7) _ —ihnX —innY —inm? n O(hz)
where 1

HY=e'S*+ ES‘”CM s®, ae{X,Y, 2},

and

efih')-l(Y Heflhei ap H H efth “ ajak

Jj=1 k=j+1

computed exactly using n single-qubit gates and (’)(n2) coupling gates.

A D___E o {} N, ) {—
:g: T [} T {3 T i, il
(a) il D’“'g %‘;‘ ' {7 L
B e P M e
—D»gg 0 U —— 0
® 20 0 .  —

14



High order Trotterisations

Trotterisation is one of the earliest candidates for Hamiltonian simulation.

IBM (14 June 2023) used Trotter splitting for an Ising chain: Kim, Eddins, Anand, Wei, van den
Berg, Rosenblatt, Nayfeh, Wu, Zaletel, Temme & Kandala (2023), ‘Evidence for the utility of
quantum computing before fault tolerance’, Nature 618, 500-505.

15
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Trotterisation is one of the earliest candidates for Hamiltonian simulation.

IBM (14 June 2023) used Trotter splitting for an Ising chain: Kim, Eddins, Anand, Wei, van den
Berg, Rosenblatt, Nayfeh, Wu, Zaletel, Temme & Kandala (2023), ‘Evidence for the utility of

quantum computing before fault tolerance’, Nature 618, 500-505.

10° " e m
2 -1 X AN
£ 10 vk
SHE
Trotter \~\
Il 1 T N
~ I N R Strang \s\~~
. 10 Yoshida NNy
N o[ e O(h)
g | 2
5 |l O(h%)
10777 o)
q T T T TTTT] T T T TTTTT] T T T TTTT]
10! 10? 10° 10*

circuit depth

No good reason to use Trotter instead of Strang, even for NISQ

Chen, Foroozandeh, Budd & S. 2023. Quantum simulation of highly-oscillatory many-body

Hamiltonians for near-term devices, submitted

15
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Machine learned Trotterisations

h(A+B) . oa1hB bihA ahB  byhA  arhB bihA a1hB

~
~

@

Traditionally: solve algebraic order conditions that result from Taylor expansion

16
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For moderate accuracies (107'~107*), often what matters is the error
constant, not the order of convergence.
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Machine learned Trotterisations

h(A+B) . oa1hB bihA axhB  byhA  arhB bihA aihB

~
~

@

Traditionally: solve algebraic order conditions that result from Taylor expansion

For moderate accuracies (107'~107*), often what matters is the error
constant, not the order of convergence.

x10'
100 . Trotter2
- Strang2
Yoshida6
> | 2104 Learn8
10 2 Learn14
3
_ 2084
g 10-44 3
£10 ]
3 —==- Trotter2 5061
| === Strang2 38
1071 ==~ Yoshida6 g 044
—— Leam8 H
—— Learnl4
1078 4 e Order 1, 2, 4 lines 029
—— Unitarity bound
T T T 0.0 T ~r T T
10? 10° 10 10° 0.0 0.5 1.0 15 2.0 2.5 3.0
number of exponentials loss of unitarity x10710

Kreusser, Lockyer, Miiller, & S 2024. Learning efficient and provably convergent splitting methods 0


https://arxiv.org/abs/2411.09444

Computing the matrix exponential

Computing ¢ or ¢”up

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review (2003).

Diagonalisation Scaling and Squaring Splitting
If A= UDU* [|A]l> 1 A=B+C

e = UePU* et = (eA/")n e = limp_ oo (eB/"eC/”>n
Fast when | Uup and U" ug cheap [|Al|< 1 needed ef, e cheap

Asymptotic Approximate e” on spectrum Iterative
z—0 z € [a, b] C o(A) Use A and up
Taylor Chebyshev
K
Polynomial Do 5 Jo(i) + 230, i*Jk(—1) Tk(z) | Polynomial Krylov
Padé
14l 1,2
Rational bl LA8 p L ? Rational Krylov
]

17
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(Polynomial) Krylov methods

Krylov subspace

Km(A, ug) = span{uo, Ao, . . ., Amfluo}

with basis V,, and tridiagonal H,, has super-linear accuracy,
<cC (‘l)’"

2m

HeA Uo — Vme '™V g

conserves norm and energy but not unitarity.

10?

error

107

—14 | | .
1077, 20 40 60 80 100

number of iterations, m

accurate once m > p = ||A

, is surpassed (Hochbruck & Lubich 1997).

18



(Polynomial) Krylov methods

Krylov subspace

Km(A, ug) = span{uo, Ao, . . ., Amfluo}

with basis V,, and tridiagonal H,, has super-linear accuracy,
<cC (‘l)’"

2m

HeA Uo — Vme '™V g

conserves norm and energy but not unitarity.

10?

error

107

—14 | | .
1077, 20 40 60 80 100

number of iterations, m

accurate once m > p = ||A

, is surpassed (Hochbruck & Lubich 1997). High
accuracy for small steps, but ineffective for large steps. 18



Rational Krylov methods: Shift-and-Invert

Shift-and-Invert (Sal) method
Qm(A, uo) = Km((A = al) ™, w),
is equivalent to Polynomial Krylov with shift-inverted matrix (A — «/)™! and
My Vel =Ry
< T

~—~—
@7 (uo) 7 (o)

19



Rational Krylov methods: Shift-and-Invert

Shift-and-Invert (Sal) method
Qn(A, o) = Kn((A - al) ", o),
is equivalent to Polynomial Krylov with shift-inverted matrix (A — «/)™! and
My Vel =Ry
v e e Y ———
@7 (uo) 7 (o)

How should we choose the shift a? Learning (Botchev, Grimm & M. Hochbruck 2013,
Katrutsa, Botchev, & Oseledets 2019), Rational Krylov fitting (Berljafa & Giittel 2017)

Optimise an approximation of the local error:

Hcp?(un) — <I>f,4(u,,7 ap) atd)f(un, an) — A¢f(u,,, an) ‘

true local error L(h,up,c) defect based estimate of local error L(h,up,c)

| = |

a, = argmingcq L(h, un, @)
adaptive (i.e., on-the-fly), unsupervised approach.

energy not conserved, error estimate asymptotic and expensive.
19



Rational Krylov methods: Rayleigh quotient

Qm(A7 UO) = IC’"((A - al)_lv Uo),
Rayleigh quotient:
Am = VmAVp.
The Rayleigh approximation:

hA hA
e'v = BVne” V.

Optimise an approximation of the local error:

h
Hgof,‘(u,,) f(Df(u,,,u,,)‘ < C/ lesHy e me1| ds
0

true local error L(h,un,c) integral estimate of local error L(h,up,c)

a, = argmin,cq L(h, un, @)

adaptive (i.e., on-the-fly), unsupervised approach.
energy conserved, error estimate not asymptotic

20
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hA hA
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Optimise an approximation of the local error:

h
Hgof,‘(u,,) f(Df(u,,,u,,)‘ < C/ lesHy e me1| ds
0

true local error L(h,un,c) integral estimate of local error L(h,up,c)

a, = argmin,cq L(h, un, @)

adaptive (i.e., on-the-fly), unsupervised approach.
energy conserved, error estimate not asymptotic , but expensive?

20



Rational Krylov methods

In practice, both Shift-and-Invert and Rayleigh quotion approaches work well

with cheaper surrogates

10
100 | A s ks e
107"
1072
1072
‘- ~
1074 ..",- E3d '~--..--
i : : -~
.
07
- . i
.
s La
107° 7 T T T T T
i 0 200 400 600 800 1,000
t
...... rational == == polynomial

t T T T t
—200 —100 0 100 200

Tennyson, Jawecki, Dolgov, & S., ‘Optimal poles for the Shift-and-Invert method', in preparation

21



Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e _ Udiag (e*iffk) U™ ~ Udiag(f(itE)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,,12
. 14+ 5z+ 75 2
Rational —2 1 ?
1-1,4+L7
AT

22
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Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.
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Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e~ = Udiag (e*iffk) U™ ~ Udiag(f(itEx)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,,1,2
. 141417
Rational —2 1 ?
PR Y
2Eigo

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

|f(ix)|=1 x € R = f(iH) is unitary
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Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e~ = Udiag (e*iffk) U™ ~ Udiag(f(itEx)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,10
1\§le?z 2
1y i)} .
1=52+757

Rational

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

|f(ix)|=1 x € R = f(iH) is unitary

polynomial methods cannot be unitary (except trivial p(x) = 1). Proof: coercivity.
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Qubitization

Qubitization (Low & Chuang 2019):

23



Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.

23



Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.

e Additive query complexity — does not increase proportionally with time of
simulation T.

log(1/¢) B
© (pT+ log(e + |og(1/5)/pT)> ) p=H]
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Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.

e Additive query complexity — does not increase proportionally with time of
simulation T.

log(1/¢) B
© (pT+ log(e + |og(1/5)/pT)> ) p=H]

e H is a Linear Combination of Unitaries (LCU), e.g. Xk, X; Yk, ...
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Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.
e Additive query complexity — does not increase proportionally with time of
simulation T.
O (T + ierer eatyem) . P
e H is a Linear Combination of Unitaries (LCU), e.g. Xk, X; Yk, ...
e Oracle complexity O(M + |C|), |C|= O(M?).
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Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.
e Additive query complexity — does not increase proportionally with time of
simulation T.
O (T + ierer eatyem) . P
e H is a Linear Combination of Unitaries (LCU), e.g. Xk, X; Yk, ...
e Oracle complexity O(M + |C|), |C|= O(M?).

e Based on polynomial Chebyshev approximation.
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Qubitization

Qubitization (Low & Chuang 2019):

e One of the most effective techniques for exp(—ihH) in terms of complexity.

Additive query complexity — does not increase proportionally with time of
simulation T.

log(1/¢) B
© (pT+ log(e + |og(1/5)/pT)> ) p=H]

H is a Linear Combination of Unitaries (LCU), e.g. Xk, X; Yk, ...
Oracle complexity O(M + | C|), |C|= O(M?).

e Based on polynomial Chebyshev approximation.

e Cannot conserve unitarity, norm, energy.

May have stability issues (due to noise outside spectrum).

23



Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e _ Udiag (e*iffk) U™ ~ Udiag(f(itE)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,,12
. 14+ 5z+ 75 2
Rational —2 1 ?
1-1,4+L7
AT
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Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e _ Udiag (e*iffk) U™ ~ Udiag(f(itE)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,,12
. 14+ 5z+ 75 2
Rational —2 1 ?
1-1,4+L7
AT

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.
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Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e~ = Udiag (e*iffk) U™ ~ Udiag(f(itEx)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,,1,2
. 141417
Rational —2 1 ?
PR Y
2Eigo

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

|f(ix)|=1 x € R = f(iH) is unitary
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Computing the matrix exponential

If we have good scalar approximations on the spectrum
e ~ f(ix), x € o(H)
Then we have good approximation of the matrix exponential,

e~ = Udiag (e*iffk) U™ ~ Udiag(f(itEx)) U™ = f(itH)

Asymptotic Approximate e” on spectrum
z—0 z € [a, b] C o(A)
Taylor Chebyshev

Polynomial | 37 o2 | Jo(i) + 20, i (—i) Tu(2)

Padé
1,10
1\§le?z 2
1y i)} .
1=52+757

Rational

Unitarity: |exp(ix)|= 1, exp maps imaginary axis to unit circle.

|f(ix)|=1 x € R = f(iH) is unitary

polynomial methods cannot be unitary (except trivial p(x) = 1). Proof: coercivity.
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AAA & AAA-Lawson

AAA & AAA-Lawson (Nakatsukasa, Sete & Trefethen 2018, Nakatsukasa & Trefethen 2020) are
greedy algorithms for rational approximations (i.e. fitting) based on the Loewner matrix framework.

(31, 31) AAA-Lawson vs Padé
Padé vs AAA-Lawson AAA-Lawson

error of AAA approximation of explitx) on two intervals, degree m=31

i ED B &0
T a0 20 0 40 s e number of inverses

Loewner matrix based rational approximations and interpolations are unitary (to machine precision
when using a modified AAA/AAA-Lawson algorithm).
Jawecki & S 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

Includes Antoulas & Anderson 1986, Mayo & Antoulas 2007, NST 2018 (AAA), NT 2020 (AAA-Lawson), JS
(submitted) (interpolation at Chebyshev nodes, modified BRASIL algorithm, modified AAA-Lawson), ...
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https://epubs.siam.org/doi/10.1137/16M1106122
https://epubs.siam.org/doi/10.1137/19M1281897
https://www.doi.org/10.1093/imanum/drad066

Best unitary rational approximation

Theorem. For w € (0, (n + 1)7), there exists a unique unitary best approximation r € U,, i.e.,

||r — exp(w:)||= inf ||u— exp(w-)]l, [|[Fll:== sup |f(ix)],
ueUp x€[—1,1]

whose phase error equioscillates at 2n + 2 points, where max approx error is achieved. Moreover, r

has minimal degree n, and distinct poles.

Three new algorithms: Interpolation at Chebyshev points, modified AAA-Lawson and BRASIL.

Superlinear convergence, A-stability, Time-symmetry

5 il
13, Semrariny
|5 som o m
5 e
T T T = T 22 T T
0 02 04 06 08 1 0 2 1 [ S B A
&) wgj(w) .

interpolation nodes

Poles ATl .
equioscillation points

convergence rates

Jawecki & S 2023. Unitary rational best approximations to the exponential function, submitted.
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https://doi.org/10.48550/arXiv.2312.13809

How to compute the matrix exponential?

C. Moler & C. V. Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review (2003).

Asymptotic | Approximate e on spectrum Iterative
z—0 z € [a, b] C o(A) Use A and up
Taylor Chebyshev
Polynomial PP % Jo(i) + 2370, i Uk(—1) Tu(2) Lanczos
Padé
q (LA 2 0 g g q
Rational FH e unitary best approximations | Rational Krylov
2 12

Other techniques: Diagonalisation & Spectral methods, Scaling and Squaring, Splitting

AAA [NST 18], AAA-Lawson [NT 20], their unitary modifications [JS 23], and three new
algorithms [JS submitted).

e Jawecki & S. 2023. Unitarity of some barycentric rational approximants, IMA J. Num. Anal.

e Jawecki & S. 2023. Unitary rational best approximations to the exponential function,
submitted.

e Jawecki & S., in preparation.
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https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://www.doi.org/10.1093/imanum/drad066
https://doi.org/10.48550/arXiv.2312.13809
https://doi.org/10.48550/arXiv.2312.13809

Hamiltonian Simulation
1. Linear

Oru = Au

2. Driven
Oru = A(t)u

3. Non-linear
Oru = Au+ N(u)
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riven systems

The solution to u'(t) = A(t)u(t) can be approximated by

e Autonomisation (Sanz-Serna & Portillo 1996), if A(t) = B(t) + C

s

by hB cihC

Upy1 = <Hek (Tk)e" > Up, Tk,1=ﬂ<+ckh, T0 = th,
k=1
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https://arxiv.org/abs/2411.09444
https://arxiv.org/abs/2411.09444

Driven systems

The solution to u'(t) = A(t)u(t) can be approximated by
e Autonomisation (Sanz-Serna & Portillo 1996), if A(t) = B(t) + C
s
Uni1 = (H ebkhB(Tk)eCth) Up, Ty =Tk +ckh,  To = tn,
k=1
e Commutator-free (Alvermann & Fehske 2011)

exp(©) =& exp (z”: cikh A(tk)> ...exp (z”: Corh A(tk)> .

k=1 k=1
Blanes, Casas & Thalhammer 2017, Rational extension (S. Maslovskaya, Offen, Ober-Blobaum, S. & Wembe 2024,

Commutator-free Cayley methods, submitted)
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https://arxiv.org/abs/2411.09444
https://arxiv.org/abs/2411.09444

Driven systems

The solution to u'(t) = A(t)u(t) can be approximated by
e Autonomisation (Sanz-Serna & Portillo 1996), if A(t) = B(t) + C
s
Uns1 = HebkhB(T‘()ec"hc) Un,  Tks1 =Tk +ckh, 7o =t
k=1
e Commutator-free (Alvermann & Fehske 2011)

exp(©) =& exp (Z cakhA(te) | .. .exp Z corh A(ty)

k=1 k=1
Blanes, Casas & Thalhammer 2017, Rational extension (S. Maslovskaya, Offen, Ober-Blobaum, S. & Wembe 2024,

Commutator-free Cayley methods, submitted)

e Magnus expansion (Magnus 1954)

um =op©m)m ok = ["a@ae— [ [*1a©). A acae +o ()

Magnus—Krylov (Kormann, Holmgren & Karlsson 2008, Iserles, Kropielnicka, & S. 2018, SINUM), Magnus—Zassenhaus (IKS
2016, Proc. Roy. Soc. A, IKS 2019a, J. Comput. Phys.), Magnus-Splittings for laser-matter (IKS 2019a, Comput. Phys
Commun., S. 2019c, J. Chem. Phys.)

29


https://arxiv.org/abs/2411.09444
https://arxiv.org/abs/2411.09444

Is Magnus expansion DoA for quantum algorithms?

A =—EE, HO=Y Y f@atsd> Y ek

k=1 ae{X,Y,Z} jk=la,Be{X,Y,Z}
A has O(|C|) = O(n?) terms. Does [ [£[A(C), A(€)] d¢ d€ have O(|C[?) = O(n*) terms?

Instead, other approaches were developed: Dyson series (Kieferova et al. 2019), time-ordered operators (Watkins
et al. 2022), L1 norm scaling (Berry et al. 2020), permutation expansion (Chen et al. 2021), slowly varying
Hamiltonians (Haah et al. 2021), interaction picture (Low & Wiebe 2018), Floquet approach (Mizuta et al. 2023),
Schrédingerization (Jin, Liu, Yu 2022)
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https://arxiv.org/abs/2312.08310
https://doi.org/10.22331/q-2023-11-06-1168
https://arxiv.org/abs/2403.13889
https://arxiv.org/abs/2403.13889

Is Magnus expansion DoA for quantum algorithms?

A =—EE, HO=Y Y f@atsd> Y ek

k=1 ae{X,Y,Z} jk=la,Be{X,Y,Z}
A has O(|C|) = O(n?) terms. Does [ [£[A(C), A(€)] d¢ d€ have O(|C[?) = O(n*) terms?

Instead, other approaches were developed: Dyson series (Kieferova et al. 2019), time-ordered operators (Watkins
et al. 2022), L1 norm scaling (Berry et al. 2020), permutation expansion (Chen et al. 2021), slowly varying
Hamiltonians (Haah et al. 2021), interaction picture (Low & Wiebe 2018), Floquet approach (Mizuta et al. 2023),
Schrédingerization (Jin, Liu, Yu 2022)

i24Ts #Ts—ihsTcs _i2,Ts
YT o S—ifs’ Cs e—ifu'S — &2 +O<h5)
N—————— N—
reuse 4th order Trotterised circuit  two single-gate layers
H(tn) + Trotter
q Magnus order 2 + Strang
107 Proposed method
CF42, scipy
...... Autonomized Yoshida 4th
B 5% SN N N Strang for time-ind
10 4 _| \\ \\ \“ rang for time-indep
\
\
\\ I
1077 L L ALLL L L R - - ‘
10 102 10° 10* 10° 10° 0.005 0.01
circuit depth t 10-2

Chen, Foroozandeh, Budd & S. 2023. submitted

30
related: 2 controls lkeda, Abrar, Chuang & Sugiura 2023, Quantum., commutator-free Casares, Zini & Arrazola


https://arxiv.org/abs/2312.08310
https://doi.org/10.22331/q-2023-11-06-1168
https://arxiv.org/abs/2403.13889
https://arxiv.org/abs/2403.13889

Hamiltonian Simulation
1. Linear
Oru = Au

2. Driven
Oru = A(t)u

3. Non-linear
Oru = Au+ N(u)
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Nonlinear systems

The solution to u’(t) = A(u(t), t)u(t)

e Autonomisation (Sanz-Serna & Portillo 1996), if A(u, t) = Lu+ g(u, t)u
K .
S CbkhLCckhg(u[ ].rk)u[k]" Tee1 = T+ beh, 7o =t
tp1 = ull, ul =y,

Related: dilation techniques such as Schrdingerization (Jin, Liu, Yu 2022)

e Exponential Integrators (Hochbruck & Ostermann 2000), A(u) = Lu + g(u)u,

—1(eht _

Upt1 = ehLun + L 1g(un)un

not a geometric integrator

e |terative linearisations

u[k+1](h) = exp <@[k](h)) ul¥

[”(h):/o A (), / / uH(c ),A(u[”(g),g)] dcde +0 (#).

] _ SO —
h+1 = U Un

Chen, Iserles, Kropielnicka, & S. 2024, Computation of some dispersive equations through their iterated linearisation, submitted.
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https://arxiv.org/abs/2405.04958

Hamiltonian Simulation is central to quantum computing

e carly candidate for quantum supremacy

e has real-world applications

e is a building block for many quantum algorithms

Correspondence between Classical and Quantum algorithms

e Qubitization

achieves additive complexity, based on Chebyshev approximation
does not conserve unitarity, norm and energy; may have stability issues

e Unitary rational approximations (Padé, AAA, best approximation,...)

faster convergence, extremely stable, conserve unitarity, norm and energy

currently no quantum algorithm

e Machine learned Trotterisations (splittings)

convergence guarantees, conserve unitarity, norm and modified energy
allow long time-steps, low error constants

can they help create optimized cricuits?

can we do this in an unsupervised way?

e Magnus based methods work well for driven spin systems
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